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Abstract

A major issue in computer security is limiting the affects a program can have on a

computer. One way of accomplishing this is to place the program into a limited

environment called a sandbox. Many attempts have been made to create an effective

sandbox, one that effectively limits the affects a program can have, yet does not make the

program unusable. The sandboxes based around intercepting system calls have

historically not been effective; however, sandboxes that limit the resources programs can

access, have been effective. To test the effectiveness of a sandbox that limits the resources

a program can access on a Windows 7 computer, a sandbox, Magnesium Object Manager

Sandbox (MOMS), that uses the Object Manager (OM) callback functionality is created.

The OM is the kernel mode Windows component that facilitates access to every resource;

third party drivers can monitor and limit the access rights to those resources by registering

a function to be called by the OM whenever a program first accesses a resource.

Performance data is collected on a set of test programs, running with and without

MOMS, and with different hardware configurations. Based on this data, MOMS has a

negligible impact, an impact a normal user probably will not notice, to the performance of

the test programs, and the hardware configuration also has a negligible impact on

performance, with or without MOMS. To test the effectiveness of MOMS, exploits are run

against a subset of the test programs and whether the associated payload was successful is

recorded. None of the payloads successfully ran, which indicates MOMS can be an

effective sandbox. While these tests of the efficiency and effectiveness of MOMS are

promising, they are limited in scope and further testing is required in order to increase

their scope. Furthermore, MOMS is analyzed to identify possible vulnerabilities it may

have. While there are some, they are all straightforward to fix with further development.
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MAGNESIUM OBJECT MANAGER SANDBOX, A MORE

EFFECTIVE SANDBOX METHOD FOR WINDOWS 7

1 Introduction

People use many programs on their computers in order to accomplish specific tasks.

The programs are expected to complete those tasks, and only those tasks, but how can that

expectation be enforced? One way is to place the program into a sandboxed, or limited,

environment, thereby restricting the tasks the program can perform. Previous sandbox

implementations have been made, but some information about how operating

systems (OSs) work is needed before they can be explained.

Modern, mainstream, OSs have two modes of operation, kernel mode and user mode.

Kernel mode contains the core of the OS and provides functionality, such as access to the

file system, to the processes in the user mode. User mode provides a restricted

environment for “normal” processes (processes that do not modify or extend the OS itself)

to run in. In user mode, processes cannot directly access other processes, unless the other

process specifically allows it, and they cannot directly access the kernel mode; they

interact with the kernel mode by making system calls. When a user mode process makes a

system call, it requests the OS to perform an action, such as writing to or reading from a

file, on its behalf.

The previous implementations have relied on intercepting system calls and then

allowing or denying the system call based on the sequence of previous system calls or

based on the parameters associated with the system call. The problem with allowing or

denying a system call based on previous ones is that it often leads to too many false

positives for the sandbox to be useful. Sandboxes that make the determination of whether

1



to allow or deny a system call based on the associated parameters often are too ineffective

because of the number of different values for the parameters. Other sandbox

implementations restrict the resources a process can access based on other mechanisms,

such as using built-in components of the OS. Security-Enhanced Linux (SELinux) and

FreeBSD Jails are examples of this latter method implemented on Linux and Unix, but

non have been implemented on Windows, to the knowledge of the author. To explore the

viability of this latter method on Windows, a proof-of-concept implementation,

Magnesium Object Manager Sandbox (MOMS), is created that uses the Object

Manager (OM) to restrict the resources sandboxed processes can access.

Windows 7 32-bit, and other Windows OSs, internally, represent every resource as an

object, which is a kernel mode structure that contains the necessary information to

represent the underlying resource. The OM manages all the objects and facilitates every

access to the objects. To interact with an object, a user mode process must have a handle

to it. A handle is a reference to an object. When a user mode process wants to access an

object, it requests a handle to it from the OM, along with the access rights it wants over it.

If the permissions the process possesses allow the requested access rights over the object,

the OM issues the process a handle to the object and stores the access rights the process

requested. When the process wants to perform an operation on an object it has a handle to,

the process requests the OS to perform the action on the object, by sending the OS the

handle and the desired action. If the access rights the process initially requested, when it

obtained the handle, are sufficient to allow the desired action, the OS performs it.

The access rights associated with a handle can be restricted further, by third party

code running in kernel mode, by registering a callback function with the OM. When a

callback function is registered with the OM, the OM calls the function every time a

process receives a handle to an object. MOMS uses this functionality in both of its modes

of operation: the Rules Generation Mode (RGM) and the Enforcement Mode (EnfM). The

2



RGM logs the objects, and the corresponding access rights, that a program receives over

the course of its operation. From this log, a list of objects, and the maximum allowed

access rights, is generated by an administrator and enforced by the EnfM.

The goals of MOMS is for it to run efficiently and to be effective. In order to run

efficiently, MOMS must not add an excessive amount of overhead, which would cause

users not to use it, because it slows down their system too much. MOMS must be effective

in two aspects, the RGM must accurately log the objects a program accesses, along with

the corresponding access rights, and the EnfM must ensure a program cannot alter the

system in such a way that it is able to access an object it should not be able to. Since the

logging of object accesses by the RGM and the object access checking by the EnfM both

run in linear time, MOMS is expected to run efficiently. Since every object access request

is viewable by MOMS, the RGM and the EnfM can log and check, respectively, every

object access; therefore, MOMS is expected to be effective,

Once MOMS is implemented, its efficiency and effectiveness is determined. The

operation of the RGM is very similar to that of the EnfM, so the RGM will be used to

indicate the overall efficiency of MOMS. To determine the efficiency of MOMS,

performance metrics will be collected on a set of test programs running in and out of the

RGM with various hardware configurations and program input. To determine the effect

the amount of available memory and the number of processor cores have on performance,

for each combination of program, program input, and whether the program is running with

or without the RGM, the performance metrics of the various hardware configurations will

be compared. To determine the performance impact of the RGM, the performance metrics

with and without the RGM will be compared, for each combination of program, program

input, and hardware configuration. Finally, the effectiveness of MOMS will be determined

by running a set of exploits against a subset of the programs and recording whether the

EnfM prevents the exploit from executing its payload. Furthermore, possible

3



vulnerabilities in MOMS will be identified and analyzed to determine the effect they have

on the security that MOMS offers.
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2 Related Work

“A sandbox is an environment in which the actions of a process are restricted

according to a security policy” [10, p. 444]. This definition includes methods such as

individual programs sandboxing themselves, the operating system (OS) creating a

sandbox around programs, and the entire OS running in a sandboxed environment through

hardware virtualization. Program level sandboxes allow the program author to just

sandbox the most vulnerable portions, but this method leaves the unsandboxed portions of

the program vulnerable, are vulnerable to kernel exploits and users overriding restrictions,

and require the program to be rewritten. Operating system (OS) level sandboxes do not

require programs to be rewritten, but are still vulnerable to kernel exploits and are also

potentially vulnerable to users overriding restrictions. Hardware virtualization provides

the most secure environment, since the host OS is not vulnerable to exploits of the

sandboxed OS, but it does present significant usability issues [19].

To gain a better understanding of the current state of sandboxes, some currently

available sandboxes and research sandboxes will be presented. Since the sandbox being

developed for this paper is an OS level sandbox, only sandboxes that operate at this level

will be presented. Much research has been conducted on sandboxes in the academic

world. The most common approach is for the sandbox to monitor system calls and

determine their actions based on them. Sandboxes such as [27] and [29] generate a model

to represent the sequence of system calls a program makes, and then if the program

deviates from the model it prevents the action. Sandboxes such as [16], [28], and [43]

extend this approach to not only look at the system calls a program makes, but to look at

the effect they produce, such as the actions they take on files and registry keys; similarly,

[38] extends this approach to dynamically sandbox programs based on the data, and

source of the data, they access. Other research efforts go as far as running device drivers in

a virtualized environment to improve system security and reliability [49].
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In addition to research sandboxes, many production sandboxes have been created.

For the Unix and Linux OSs, and their many variants, there are three popular sandboxes:

Security-Enhanced Linux (SELinux), AppArmor, and FreeBSD Jails. SELinux provides a

framework to enforce a security policy, which can limit the resources a process can access

based on mandatory access controls, which enforce access controls regardless of who the

user is (SELinux treats the “root” super-user the same as regular users) [45]. AppArmor is

an alternative to SELinux that also limits the resources, and the permissions to those

resources, that programs can access [7]. Another alternative, FreeBSD Jails restricts a

process to a given directory subtree and assigns each jail its own hostname and static IP

address. Furthermore, Jails can have their own set of users; however, these users are

restricted to the jailed environment, so even the root user inside of a jail cannot perform

operations outside of the jailed environment [40].

On the Windows platform, several companies produce sandboxes: Comodo Firewall,

avast! Pro Antivirus, and Sandboxie. Comodo Firewall contains a sandbox that

automatically sandboxes programs. Comodo maintains a list of known safe programs and

known malware. Comodo Firewall allows programs on the known safe programs list to

run outside the sandbox and removes programs that are on the known malware list [11].

avast! Pro Antivirus does not automatically sandbox programs, but allows users to run

programs in a virtual (sandboxed) environment and prompts users to do so for suspicious

programs [9]. Sandboxie takes a different approach than the previous two, it focuses on

preventing sandboxed programs from making permanent changes to the system by

intercepting changes the sandboxed programs make and redirects them to the sandbox

environment. This allows Sandboxie to delete any changes the sandboxed program makes

to the system [21].
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2.1 Windows 7 32-bit in Detail

Windows 7 consists of many components that provide the services and functionality

essential for the OS. These components reside in both user and kernel mode, as shown in

Figure 2.1. Due to hardware and software protections, user mode code cannot directly

access kernel mode memory, while kernel mode code can directly access user mode

memory. Furthermore, code running in one process cannot directly access the memory of

another process, unless the other process allows it, such as through shared memory. Each

user mode component, as well as each user mode program, runs in its own process.

The Object Manager (OM) manages and facilitates access to all the objects on the

system, which represent system resources. The Security Reference Monitor (SRM)

provides the infrastructure to secure the objects. All other components rely on these two

components to interact with system resources in a secure manner [30].

2.1.1 Security Reference Monitor. Windows 7 32-bit uses a user-based security

model, implemented by the SRM, where each user has a set of actions they are allowed to

take, such as reading a file or writing a registry key. The SRM uses access tokens, Token

objects, to determine the actions a process can take. Access tokens are created when a user

logs on and contains the security identifier (SID) of the account for the user and any

groups the user belongs to. SIDs uniquely identify users and groups on the system. When

an user starts a process, the process receives the access token for the user. Therefore, each

process a user starts has the full rights of the user by default, although restricted access

tokens can be given to a process [36].

Every securable object has a Discretionary Access Control List (DACL) that lists the

access rights the various SIDs can have over the object. The DACL consists of a set of

Access Control Entrys (ACEs). Each ACE contains the allowed or denied access rights for

a SID. When a process wants to access an object, it indicates the access rights it wants
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Figure 2.1: Windows Architecture [41, Figure 2-3]
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over the object with an access mask. In order to determine whether the access rights

should be allowed, the SRM compares the SIDs that apply to the process to the DACL of

the object the process wants to access and determines whether or not the access, as

indicated by the access mask, should be allowed [36].

Figure 2.2: Access Mask Structure [5]

Table 2.1: Generic Rights [5]

Generic Right Name Generic Right Mapping

GENERIC READ Rights to read the object

GENERIC WRITE Rights to write the object

GENERIC EXECUTE Rights to execute, or alternatively view, the

object

GENERIC ALL Rights to read, write, and execute the object

MAXIMUM ALLOWED [51] Grants the maximum allowed access rights

when making an access check

ACCESS SYSTEM SECURITY [42] Set or read the SACL in the security descrip-

tor of an object
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Table 2.2: Standard Rights [5]

Standard Right Name Allowed Action

SYNCHRONIZE Wait on the object

WRITE OWNER Modify the owner SID of the object

WRITE DAC Modify the security information for the object

READ CONTROL Read the security information for the object

DELETE Delete the object

Access masks, a 32-bit field, indicate the desired access rights a process wants over

an object. Access masks have three fields, as depicted in Figure 2.2: generic, standard,

and specific. Each generic access right maps to a set of standard and specific rights; the

mapping depends on the object type. Table 2.1 lists the meaning of each generic right

field. Table 2.2 describes the standard Rights, rights common to all object types. The

specific rights depend on the object type and are described below, for the object types that

are pertinent to this paper.

2.1.2 Object Manager [41, p. 133-170]. The OM in the Windows 7 OS, as well as

others, provides a common and centralized method for the kernel to manage access to all

system resources. The OM represents system resources as objects. In this instance, an

object is a data structure that contains pertinent information about a resource, not an

object in the object-oriented programming sense. The OM retains the object structures, in

memory, until no process requires access to them and provides a way to access objects by

name. Each object consists of a header and a body. The header contains information

common to all objects. There are many object types that represent various types of

resources (files, keys, synchronization primitives, etc.). The object body is specific to, and

the same for, each object type; it contains information common to each object of the
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corresponding object type. The OM uses the header to manage all objects in a uniform

manner. Each object type is implemented by an executive component, which uses the

object body to manage the objects of the type it implements.

Figure 2.3: Handle Structure [41, Figure 3-19]

The object data structures reside in kernel space and are accessed in two ways: by

pointer or by handle. User-mode processes access objects by handle, while processes in

kernel-mode can access objects by pointer or by handle. A kernel-mode process can

determine the location of the object structure without the aid of the OM, so it can access

any object without access checks; however, when an object is accessed by pointer, through

the OM, the OM retains the object until access is no longer required. A handle is an

executive structure, depicted in Figure 2.3, that the OM uses to determine the location of

the object being accessed and the access rights a process possesses over an object

(determined by the ACCESS MASK field). The other fields of the handle structure are

not important to this research. When a kernel mode process accesses an object by handle,
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the process receives a pointer to the object, the process can decide whether or not the

access check should be conducted, and the OM retains the object until it is no longer being

accessed. When an user mode process accesses an object by handle, the user mode process

passes a handle to the object, and the actions to be performed, to the kernel, then the kernel

conducts the actions on the object, if the user mode process has sufficient permissions.

When access to a resource is requested, if there is not already an object that

represents it, one is created. The object is kept until all processes indicate that they no

longer need access to the object, at which time the object is deleted. A process can receive

a handle to an object, and thereby have access to it, in one of three ways: when the process

creates the object, by opening an object by name, and by receiving a duplicate handle

from a process that already has a handle to the object (occurs when one process inherits

handles from another process or when one process explicitly duplicates a handle and gives

it to another process). Two processes share an object when both open the same object by

name or when one process receives a handle from the other process through duplication.

2.1.2.1 Object Manager Directory. The OM organizes all the named objects

into a directory structure, as depicted in Figure 2.4, that is much like a file system, and is

referred to as the OM namespace. All named objects, except Key, File, and Process

objects, have their names in the OM namespace. Whenever an object is referenced by

name, the name of the object is passed to the OM, which then traverses the directory until

it either finds the object or determines that the object does not exist in the OM namespace.

While Key and File object names are not in the OM namespace, their names are rooted

there. When a Key or File object is referenced by name, the name of the Key or File object

is passed to the OM, which traverses the OM namespace portion of the object name then

passes the rest of the object name to the appropriate component: the Configuration
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Figure 2.4: Object Manager Directory Structure [41, 33, Table 3-14]
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Manager for Key objects and the File Manager for File objects. The Key and File object

name lookups will be further detailed below in the object type descriptions.

2.1.2.2 Object Header. The Object Header provides information common to

every object. The OM uses this structure to manage all the objects in a general manner. As

shown in Figure 2.5, the object header contains eleven mandatory fields and five optional

headers. The object header immediately precedes the object body of the object that it

refers to. The optional fields included with a specific object header are indicated by the

InfoMask field, as described below, and they immediately precede the mandatory fields in

the order indicated in Figure 2.5. Below are the descriptions of each field [53, 41,

p. 139-140].

PointerCount and HandleCount The OM uses PointerCount and HandleCount to

determine when it is safe to delete an object. When a resource is referenced, and

there is no object that represents it, the OM creates one. Each object is retained until

both PointerCount and HandleCount are zero, at which time the OM deletes the

object. When the object is referenced or dereferenced by pointer the OM increments

or decrements, respectively, PointerCount. When the object is referenced or

dereferenced by handle the OM increments or decrements, respectively, both

PointerCount and HandleCount. So PointerCount is a count of the number of

pointer and handle references to the object, while HandleCount is only a count of

the number of handle references to the object.

NextToFree This field is undocumented.

Lock A per-object lock used to ensure the object structure is not modified by two

processes at the same time.

14



Figure 2.5: The Object Header Structure
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-Ox008 OBJECT HEADER PROCESS INFO 

+OxOOO ExclusiveProcess: Ptr32 EPROCESS -
+Ox004 Reserved: Uint4B 

-Ox010 OBJECT HEADER QUOTA INFO 

+OxOOO PagedPooiCharge : Uint4B 

+Ox004 NonPagedPooiCharge : Uint4B 

+Ox008 SecurityDescriptorCharge : Uint4B 

+OxOOc SecurityDescriptorQuotaBiock : Ptr32 Void 

-Ox008 OBJECT HEADER HANDLE INFO 

+OxOOO HandleCountDataBase : Ptr32 -OBJECT_HANDLE_COUNT_DATABASE 

+OxOOO SingleEntry: _OBJECT_HANDLE_COUNT_ENTRY 

-Ox010 OBJECT HEADER NAME INFO 

+OxOOO Directory: Ptr32 _OBJECT_DIRECTORY 

+Ox004 Name: - UNICODE_ STRING 

+OxOOc ReferenceCount: lnt4B 

-Ox010 OBJECT HEADER CREATOR INFO 

+OxOOO Type list : _LIST _ENTRY 

+Ox008 CreatorUniqueProcess: Ptr32 Void 

+OxOOc CreatorBackTracelndex : Uint2B 

+OxOOe Reserved : Uint2B 

+OxOOO OBJECT HEADER 

+OxOOO PointerCount: lnt4B 

+Ox004 HandleCount: lnt4B 

+Ox004 NextToFree: Ptr32 

+Ox008 Lock: - EX_PUSH_LOCK 

+OxOOC Typelndex: UChar 

+OxOOD TraceFiags: UChar 

+OxOOE lnfoMask: UChar 

+OxOOF Flags: UChar 

+Ox010 ObjectCreatelnfo: Ptr32 - OBJECT_ CREATE_INFORMATION 

+Ox010 QuotaBiockCharged: Ptr32 

+Ox014 Secu rityDescri ptor: Ptr32 - SECURITY _DESCRIPTOR 



TypeIndex An index into a global array of pointers to the object types. The value in this

field indicates the object type of the object.

TraceFlags This field contains information related to tracing object references and

dereferences during debugging.

InfoMask This field indicates which optional headers, if any, are included with the object

header. The presence of each of the five optional headers is indicated by a bit in the

InfoMask field. The order of the included optional headers, as well as the position

of the corresponding bit (lowest to highest), are the same as Figure 2.5 indicates.

Below are the descriptions of each optional header:

Creator Information (Bit Pos 0) This optional header links the object to all other

objects of the same type and contains a pointer to the process that created the

object. This optional header is only included when the Type object for the

object has the MaintainTypeList flag set.

Name Information (Bit Pos 1) For objects created with a name, this optional

header contains the name of the object and a pointer to its place in the object

namespace.

Handle Information (Bit Pos 2) Contains a list of the processes that have a handle

to the object open. This header is only included when the Type object for the

object has the MaintainHandleCount flag set.

Quota Information (Bit Pos 3) This optional header contains the resource charges

against a process when it opens a handle to the object. This optional header is

included when the quota of the object differs from the default quota of the

object type and for other special cases.

Process Information (Bit Pos 4) This optional header is active if it is opened to be

exclusive to a single process and it contains a pointer to the process.
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Flags This is a set of attributes for the object that the OM uses to manage the object

internally. The flags are described in.

ObjectCreateInfo Maintains information about the process that created the object and a

list that links the object to other objects of the same type. This field is only valid

when the Type object for the object has the MaintainTypeList flag set.

QuotaBlockCharged Contains the resource charges against a process when it opens a

handle to the object. This field is valid when the quota of the object differs from the

default quota of the object type and for other special cases.

SecurityDescriptor This is a pointer to the permissions for this object and is only valid

for named objects.

2.1.2.3 Object Types. Since Windows represents every resource as an object,

there are many object types, because there are many types of resources. Object types are

themselves represented by the Type object, an object itself. Windows allows the creation

of object types through undocumented functions within the kernel. The Type object

contains information common to and aggregate statistics about all objects of that type,

information the OM requires in order to manage objects of that type, and default settings

for objects of that type. There are 42 object types by default; however, only 20 of them are

directly accessible in user mode through API functions [41, p. 136-137]. The object types

that are only directly available to the kernel are the following: Adapter, ALPC Port,

Callback, Controller, DebugObject, Device, Driver, EtwConsumer, EtwRegistration,

EventPair, FilterCommunicationPort, FilterConnectionPort, IoCompletionReserve,

KeyedEvent, PcwObject, PowerRequest, Profile, Session, SymbolicLink, Type,

UserApcReserve, WmiGuid. They are detailed below. Since this sandbox is intended to

only sandbox user-space programs, only the object types that are available in user-space

will be detailed.
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Directory Directory objects provide the directory structure for the OM in a similar way

as a directory in a file system; however, the OM directory structure is different and

independent from the file structure. Limiting the directories in the OM that a

process has access to can provide additional, although course, security. Table 2.3

lists the specific rights that apply to Directory objects.

Table 2.3: Directory Object Specific Rights [33, 3]

Access Mask Specific Right Name

Specific Right Description

0x0001 DIRECTORY QUERY

Object Directory Query

0x0002 DIRECTORY TRAVERSE

Object Directory Name Lookup

0x0004 DIRECTORY CREATE OBJECT

Object Directory Create Name

0x0008 DIRECTORY CREATE SUBDIRECTORY

Object Directory Create Subdirectory

0x000F DIRECTORY ALL ACCESS

All of the Object Directory Specific Rights

Synchronization Object (Event, Mutex, Semaphore, Timer) Synchronization objects

allow multiple threads to synchronize their execution, such as limiting the number

of threads that can concurrently execute a section of code. While synchronization

objects do not pose a direct security risk, that is they cannot allow access to
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resources a process should not have access to, they can lead to denial of service. A

compromise of a synchronization object can lead to a denial of service if the

compromise prevents a thread from executing when it should. While these object

types are specifically created for synchronization, other object types can facilitate

synchronization [2]. The specific rights that pertain to synchronization objects are

listed in Table 2.4.

Table 2.4: Synchronization Object Specific Rights [47, 3]

Access Mask Specific Right Name Specific Right Description

Event

0x0001 EVENT QUERY STATE Query Event Object State

0x0002 EVENT MODIFY STATE Modify Event Object State

Mutex

0x0001 MUTEX MODIFY STATE Modify Mutex Object State

Semaphore

0x0001 SEMAPHORE QUERY STATE Query Semaphore Object State

0x0002 SEMAPHORE MODIFY STATE Modify Semaphore Object State

Timer

0x0001 TIMER QUERY STATE Query Timer Object State

0x0002 Timer MODIFY STATE Modify Timer Object State

File The OM represents files, directories, and pipes with the File object. File objects do

not have a name in the OM namespace, but they do have an internal name in the File

object structure, which is the name of the file, directory, or pipe it represents. The
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internal name is anchored to the OM namespace by the name of the drive it resides

on, which is located in the \Device directory. Table 2.5 lists the specific rights for

File objects.

Table 2.5: File Object Specific Rights [54, 12, 3]

Access
Mask Type Specific Right Name Specific Right Description

0x0001 F, P FILE READ DATA Read Data from the File / Pipe

D FILE LIST DIRECTORY List the Files in the Directory

0x0002 F, P FILE WRITE DATA Write Data to the File / Pipe

D FILE ADD FILE Add Files to the Directory

0x0004 F FILE APPEND DATA Append Data to the File

D FILE ADD SUBDIRECTORY Add Directories to the Direc-

tory

P FILE CREATE PIPE INSTANCE Create a Named Pipe Instance

0x0008 F, D FILE READ EA Read Extended Attributes

0x0010 F, D FILE WRITE EA Write Extended Attributes

0x0020 F FILE EXECUTE Read File Data Into Memory

D FILE TRAVERSE Traverse the Directory

0x0040 D FILE DELETE CHILD Delete a File or Directory

from the Directory

0x0080 A FILE READ ATTRIBUTES Read the Attributes of the File

0x0100 A FILE WRITE ATTRIBUTES Write the Attributes of the File

F: File D: Directory P: Pipe
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IoCompletion This object provides a mechanism to alert processes when an I/O

operation finishes. Therefore, this object does not need additional protections, since

the I/O operations are protected [22].

Job Job objects provide a mechanism to manage processes as a group, such as setting

security attributes, suspending them, terminating them, etc. Job objects only group

processes, which have their own security, so if the processes are secured, the job

objects do not need to be secured [25].

Key The Key object represents registry keys and Table 2.6 contains the specific rights for

Key objects. Key objects, like File objects do not have a name in the OM

namespace, rather they have their own internal name. The OM directory has a Key

object attached to the root of the directory named \Registry. To lookup a registry

key by name, the OM receives the name of the key from the Configuration

Manager (CM) (the component responsible for the registry) and starts looking up

the name. It first encounters the Key named \Registry, at which time it sends the

rest of the name of the key to the CM to finish the lookup.

Figure 2.6: Key Object Related Structures Required for Key Name Lookup

As indicated above, there are two levels for registry keys: the OM level and the CM

level. The Key object, called CM KEY BODY in Figure 2.6, refers to a specific

registry key, while the CM KEY CONTROL BLOCK and the

CM NAME CONTROL BLOCK refer to a subkey. Each CM KEY CONTROL BLOCK points
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Figure 2.7: Example of the Relationship of the Key Object Related Structures

to the next subkey of its name; keys that have common beginning key names share

CM KEY CONTROL BLOCKs for the shared subkeys. For example, as depicted in

Figure 2.7, there is a Key object, CM KEY BODY, for each of the three registry keys:

\Registry\SubKey1, \Registry\SubKey1\SubKey2, and

\Registry\SubKey1\SubKey3. Each of the three Key objects point to a different

CM KEY CONTROL BLOCK, but have the SubKey1 and \Registry

CM KEY CONTROL BLOCK in common in their chain. Finally, the key name is

anchored in the root directory of the OM [41, p. 276-277].

Process The Process object contains the information needed to manage processes. When

a process creates another process, it receives a handle to the new process with full

access rights. The specific rights for the Process object are in Table 2.7.

Section Section objects contain the necessary information to manage a section of

memory. A memory section can map to a file or to the page file. Furthermore,

processes can share access to memory sections through views. Views allow a

process to access a portion of a memory section and defines what actions a process

can take on that portion of memory [44]. Table 2.8 lists the specific rights for

Section objects.
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Table 2.6: Key Object Specific Rights [39]

Access Mask Specific Right Name Specific Right Description

0x0001 KEY QUERY VALUE Query Registry Key Values

0x0002 KEY SET VALUE Create, Delete, or Set Registry

Key Values

0x0004 KEY CREATE SUB KEY Create a Subkey of a Registry

Key

0x0008 KEY ENUMERATE SUB KEYS Enumerate the Subkeys of a

Registry Key

0x0010 KEY NOTIFY Allows Receipt of Change

Notifications for a Registry

Key or its SubKeys

0x0020 KEY CREATE LINK Reserved for system use

0x0100 KEY WOW64 64KEY Indicates a 64-bit application

should operate on the 64-bit

registry view - ignored by 32-

bit Windows

0x0200 KEY WOW64 32KEY Indicates a 64-bit application

should operate on the 64-bit

registry view - ignored by 32-

bit Windows
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Table 2.7: Process Object Specific Rights [35, 3]

Access Mask Specific Right Name Specific Right Description

0x0001 PROCESS TERMINATE Terminate the process

0x0002 PROCESS CREATE THREAD Create a thread associated

with the process

0x0004 PROCESS SET SESSIONID

0x0008 PROCESS VM OPERATION Modify the address space of

the process

0x0010 PROCESS VM READ Read from the address space

of the process

0x0020 PROCESS VM WRITE Write to the address space of

the process

0x0040 PROCESS DUP HANDLE Duplicate handles to or from

the process

0x0080 PROCESS CREATE PROCESS Create a child process of the

process

0x0100 PROCESS SET QUOTA Set the working set size for the

process

0x0200 PROCESS SET INFORMATION Modify process settings

0x0400 PROCESS QUERY INFORMATION Query process settings

0x0800 PROCESS SUSPEND RESUME Suspend or resume the pro-

cess

0x1000 PROCESS QUERY LIMITED INFORMATION
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Table 2.8: Section Object Specific Rights [55, 3]

Access Mask Specific Right Name Specific Right Description

0x0001 SECTION QUERY Query the Section object for

information about the section

0x0002 SECTION MAP WRITE Write views of the section

0x0004 SECTION MAP READ Read views of the section

0x0008 SECTION MAP EXECUTE Execute views of the section

0x0010 SECTION EXTEND SIZE Dynamically extend the sec-

tion size

0x0020 SECTION MAP EXECUTE EXPLICIT

Undocumented

Thread The Thread object represents information required for the system to manage the

thread. Threads share the handle table of the process they are associated with;

however, a thread can gain access to more objects than their associated process

through impersonation tokens and a process can create a thread in the context of

another process. The ability for a process to make the previous changes, and others,

are specified through the specific rights for Thread objects and are detailed in

Table 2.9.

Kernel Transaction Objects (Enlistment, Resource Manager, Transaction Manager,

Transaction) The Kernel Transaction Manager provides support for executing

multiple operations as an atomic transaction. Transactions allow multiple operations

to be conducted so that if any of the operations fail, all of the operations are undone.

These objects provide the kernel level support for this functionality [41, p. 240-241].
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Table 2.9: Thread Object Specific Rights [35, 50, 3]

Access Mask Specific Right Name Specific Right Description

0x0001 THREAD TERMINATE Terminate the thread

0x0002 THREAD SUSPEND RESUME Suspend or resume the thread

0x0004 THREAD ALERT Undocumented

0x0008 THREAD GET CONTEXT Query the execution context

of the thread

0x0010 THREAD SET CONTEXT Modify the execution context

of the thread

0x0020 THREAD SET INFORMATION Modify the thread settings

0x0040 THREAD QUERY INFORMATION Query the thread settings

0x0080 THREAD SET THREAD TOKEN Set the impersonation token

for a thread

0x0100 THREAD IMPERSONATE Directly use the security infor-

mation of a thread

0x0200 THREAD DIRECT IMPERSONATION

Allows a server thread to im-

personate a client

0x0400 THREAD SET LIMITED INFORMATION

Modify a limited set of thread

settings

0x0800 THREAD QUERY LIMITED INFORMATION

Query a limited set of thread

settings
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Since transactions are wrappers for other operations, no additional security must be

applied to them, since the operations themselves possess their own security.

Token Token objects contain the access control lists, security identifiers, and other items

the SRM requires to enforce user-based security. A process can alter the contents of

a Token, thereby altering the permissions a process has over an object [36].

Therefore, the actions a process can take on a Token object must be controlled and

the specific rights are defined in Table 2.10.

TpWorkerFactory The TpWorkerFactory is an object for kernel level support for thread

pools. Thread pools allow a process to create a dynamic number of threads, that are

managed by the kernel. Since the TpWorkerFactory is essentially a container for

threads, much the same way as a Job object is a container for processes, additional

security is not needed [41, p. 386-390].

WindowStation and Desktop Window stations contain a clipboard, an atom table, and a

set of Desktop objects. There is only one interactive window station per session

called WinSta0. An atom table is a 16-bit integer, atom, to string look-up table [1].

Each Window Station has three Desktops by default: the logon desktop, the default

desktop, and the screensaver desktop. Each Desktop has a set of windows.

Processes on a Desktop can only communicate with other processes on the same

Desktop, through the Desktop mechanisms, such as Window messages. Window

Stations and Desktops do not allow processes on them to communicate between

separate Window Stations and Desktops; however, processes can control the

Window Station or Desktop they are on and can affect other processes on the same

Window Station or Desktop, so the access rights a process has to a Window Station

or Desktop must be controlled [4]. The specific rights for WindowStation objects
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Table 2.10: Token Object Specific Rights [6, 3]

Access Mask Specific Right Name Specific Right Description

0x0001 TOKEN ASSIGN PRIMARY Attach a primary token to the

process

0x0002 TOKEN DUPLICATE Duplicate the access token

0x0004 TOKEN IMPERSONATE Attach an impersonation to-

ken to the process

0x0008 TOKEN QUERY Query the access token

0x0010 TOKEN QUERY SOURCE Query the source of the access

token

0x0020 TOKEN ADJUST PRIVILEGES Enable or disable the privi-

leges in the access token

0x0040 TOKEN ADJUST GROUPS Adjust the attributes of the

groups in the access token

0x0080 TOKEN ADJUST DEFAULT Change the default owner, pri-

mary group, or DACL of the

access token

0x0100 TOKEN ADJUST SESSIONID Adjust the session ID of the

access token

28



are defined in Table 2.11 and the specific rights for Desktop objects are defined in

Table 2.12.

Table 2.11: WindowStation Object Specific Rights [3]

Access Mask Specific Right Name Specific Right Description

0x0001 WINSTA ENUMDESKTOPS Enumerate existing Desktop

objects

0x0002 WINSTA READATTRIBUTES Read the attributes of the Win-

dowStation object

0x0004 WINSTA ACCESSCLIPBOARD Use the clipboard

0x0008 WINSTA CREATEDESKTOP Create a Desktop object on the

Window Station

0x0010 WINSTA WRITEATTRIBUTES Modify the attributes of the

WindowStation object

0x0020 WINSTA ACCESSGLOBALATOMS Modify global atoms

0x0040 WINSTA EXITWINDOWS Close the Window Station or

shutdown the system

0x0100 WINSTA ENUMERATE Enumerate the Window Sta-

tion

0x0200 WINSTA READSCREEN Access screen contents

2.1.2.4 Object Manager Callbacks. Starting in Windows Vista, and

continuing with Windows 7, Microsoft added callback function capabilities to the OM.

The callbacks allow a function to be called before or after an object is created or

duplicated. The standard functionality only allows callback functions to be registered for
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Table 2.12: Desktop Object Specific Rights

Access Mask Specific Right Name Specific Right Description

0x0001 DESKTOP READOBJECTS Read objects on the desktop

0x0002 DESKTOP CREATEWINDOW Create a window on the desk-

top

0x0004 DESKTOP CREATEMENU Create a menu on the desktop

0x0008 DESKTOP HOOKCONTROL Establish one of the window

hooks

0x0010 DESKTOP JOURNALRECORD Perform journal recording on

the desktop

0x0020 DESKTOP JOURNALPLAYBACK Perform journal playback on

the desktop

0x0040 DESKTOP ENUMERATE Enumerate the desktop

0x0080 DESKTOP WRITEOBJECTS Write objects on the desktop

0x0100 DESKTOP SWITCHDESKTOP Activate the desktop
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Figure 2.8: Functions and Data Structures of the Object Manager Callbacks
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Process and Thread objects; however, any object type can be enabled to have callbacks

registered for it by setting the SupportsObjectCallbacks bit in the OBJECT TYPE structure

for that object to one. The OM callbacks allow the restriction of the access rights a

process receives over an object, but does not allow the object access to be directly blocked

(it can be indirectly blocked by removing all access rights).

To use the OM callback functionality, one must register a pre or post callback

function with the ObRegisterCallbacks function. The ObRegisterCallbacks function has

an OB CALLBACK REGISTRATION structure as input, as shown in Figure 2.8, which

contains a pointer to an array of OB OPERATION REGISTRATION structures. Each

OB OPERATION REGISTRATION structure contains fields that indicate when the callbacks

are triggered: the object type the callback function(s) are called for, whether the

function(s) are called before or after the operation, and whether the function(s) should be

called when a handle to the object is created or duplicated. In addition, the structure

contains the function that should be called for each object type before and after the

operation (if a function should not be called, the corresponding field is set to NULL).

The main difference between the callback functions lies between the

ObjectPreCallback and ObjectPostCallback functions and the create and duplicate

modes of the ObjectPreCallback function. The ObjectPreCallback function contain two

ACCESS MASKs, one for the original access the process desires for the object

(OriginalDesiredAccess) and the access the filter allows the process to the object

(DesiredAccess; the DesiredAccess must have a subset of the access rights in

OriginalDesiredAccess). The ObjectPostCallback function contains one ACCESS MASK

for the actual access granted to the process for the object. Within the ObjectPreCallback

function, the OB PRE DUPLICATE HANDLE INFORMATION structure contains a pointer to

the process that the handle is being copied from and the process that it is being copied to;

the OB PRE CREATE HANDLE INFORMATION structure does not.

32



3 Methodology

Magnesium Object Manager Sandbox (MOMS) monitors and restricts objects that

programs, such as Internet Explorer, access. The term program, in this case, refers to all

the processes that are required for what a normal user conceptually views as a program to

run. MOMS contains a list of all the programs, the Program Watch List (PWL), it should

sandbox. Each program in the PWL has a main process, the process used to start the

program; for example, “iexplore.exe” is the main process for Internet Explorer. For each

program in the PWL, MOMS maintains a list of the processes, Associated Process

List (APL), associated with the program.

MOMS has two modes of operation: the Rules Generation Mode (RGM) and the

Enforcement Mode (EnfM). The RGM determines the resources each program wants

access to and runs on an administration computer, a computer with Windows 7 32-bit free

of viruses or any other code unintended to be executed. The RGM produces a list of the

objects, the Operation Record List (ORL), and corresponding access rights, a program

accesses by monitoring handle creation and duplication with the OM callback

functionality. The EnfM runs on production computers with Windows 7 32-bit installed. It

uses the same OM callback functionality that the RGM uses to monitor handle creation

and duplication requests; instead of logging each request, for each process in the APL, it

limits the access rights the process receives over the object to those in the Object Allow

List (OAL), which is based on the ORL.

Of the 42 object types present in Windows 7 32-bit, thirteen of them are monitored

by MOMS: Directory, Event, Mutex, Semaphore, Timer, File, Key, Process, Section,

Thread, Token, WindowStation, and Desktop. The other object types are not monitored

because they are either not available to user mode, since the API does not make them

available [41, Table 3-5], or they are used to manage other object types that are monitored,

such as Job objects.
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This section discusses the goals of the individual components of MOMS and the

approaches to evaluate those goals.

3.1 Goals and Approaches

The goal of this research is to determine the effectiveness and efficiency of MOMS.

The RGM sacrifices some speed for efficient object access storage by updating the

ACCESS MASK for objects in the access list, in linear time based on the number of objects

in the ORL; therefore, the RGM should run efficiently. The EnfM maximizes both

effectiveness and efficiency. The EnfM intercepts each request for access to resources and

allows or restricts the request based on the OAL. The request interception runs in constant

time and the access check runs in linear time based on the number of objects in the OAL

of the program. Since the RGM and EnfM run in linear time and checks each access

request, MOMS is expected to be efficient as a whole and effective at preventing payloads

associated with exploits from running.

3.1.1 Efficient Operation. To be practical and accepted, the RGM and the EnfM

must not add an excessive overhead, a noticeable slowdown, to the operation of the

system. Since the operation of the RGM and the EnfM are very similar, the RGM logs

access requests and the EnfM allows or restricts access requests, the performance of the

EnfM will be very similar to that of the RGM. Therefore, the efficiency of MOMS will be

determined by comparing the performance, the execution time or speed, of a set of

programs in and out of the RGM, with varying hardware.

3.1.2 Accurate Object Allow List. Another goal for the RGM is that it generates

an accurate OAL. This is essential because the security of the system depends on this and

less manual configuration is required. To test this goal, a set of programs are ran in and

out of the EnfM with the OAL. The accuracy is determined by the number of exploits

whose payloads successfully execute without the EnfM versus with the EnfM.
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3.1.3 Ensure the Enforcement Mode Cannot be Circumvented. The last goal

ensures the EnfM cannot be circumvented via side channels. For MOMS, a side channel

exists when a process can access an object it should not be able to, or in a way it should

not be able to, by altering the system in a way that makes MOMS determine the access

should be allowed. This goal cannot be fully evaluated with current software because

although MOMS could prevent software from using side channels that were written

without considering this sandbox, there could be an easily exploitable flaw in MOMS that

would render the sandbox ineffective. Therefore, MOMS is evaluated analytically

identifying potential vulnerabilities in MOMS and then determining the impact they may

have, as well as any possible mitigations for them.

3.2 System Under Test

The system under test (Figure 3.1), MOMS, consists of two Components Under Test

(CUT), the RGM and the EnfM, as well as two supporting components, the administration

computer and the production computer.

3.2.1 Associated Process List Generation. The APL contains the Process

Identifiers (PIDs) that are associated with the main process. A PID is a numerical unique

identifier for processes. Also, each Process object contains the PID of the process that

created it, the parent of the process. Whenever a handle to a Process object is created or

duplicated, the PID of that process is added to the APL of a watched process if the name

of the process is the same as the name of the main process or if the PID of the parent of

the process is in the APL. Processes are added to the APL in this fashion, because this

method associates any process that a main process starts, directly or indirectly, with the

main process.
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Figure 3.1: Magnesium Object Manager Sandbox

3.2.2 Rules Generation Mode. In the RGM, an ORL is maintained for each

program in the PWL. For create operations, if the process creating the handle (the current

process) is in the APL of a PWL, the operation is added to the ORL of that program. For

duplicate operations, if the process the handle is being duplicated to is in the APL of a

PWL, and it is not being duplicated from a process in the same APL, the operation is

added to the ORL of that program. If the handle is being duplicated from a process in the

APL, the operation is not added to the ORL of that program because the program would

already have access to the object in order to be able to duplicate a handle to the object. If

the object already exists in the list, the ACCESS MASK of the object is OR’ed with the

ACCESS MASK of the object already in the list. Unnamed objects are not included in the

ORL. This produces a list of the objects the program accesses along with a ACCESS MASK

that includes all the possible ACCESS MASKs the program needs.
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3.2.3 Enforcement Mode. In the EnfM, MOMS references an OAL to determine if

an operation should occur. The OAL consists of the objects in the ORL, with more or

fewer objects, or reduced or increased access rights. The decision of whether to restrict,

deny, or allow, an operation depends on the process that receives the handle and, for

handle duplication, the process that the handle originates from. If the process that receives

the handle is not in an APL, the operation is allowed, since the process is not being

sandboxed. For create operations, if the object has a name, the operation is restricted to

those that are in the OAL of the program that the process receiving the handle belongs to.

If the object does not have a name, the operation is allowed. For duplicate operations, the

operation is allowed in the following scenarios:

1. the process the handle originates from and the process that receives the handle are in

the APL of the same program,

2. if the object has a name, the operation is restricted to those in the OAL of the

program,

3. if the object does not have a name, the handle originates from the parent process of

the process that receives the handle or if the process that the handle originates from

is a system process, such as explorer.exe or svchost.exe.

When an operation is restricted to the objects in an OAL, if the name of the object is in the

OAL, the ACCESS MASK is limited by the ACCESS MASK in the OAL; otherwise, all rights

in the ACCESS MASK are removed. The EnfM also ensures a process does not access an

object it should not have access to through an object it should, such as an object that is a

hard, or symbolic, link.

This algorithm ensures each program does not access a named object it should not

and that unnamed objects do not cross the program boundary. Unnamed objects are
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allowed to be duplicated from a process to its child process, or from a system process,

without restriction because this is required for normal operation.

3.3 System Services

MOMS provides two main services: generation of the OAL and the enforcement of

it. The sandbox administrator generates the OAL based on the ORL produced by the

RGM. The OALs used for these tests are minimally altered versions of the ORLs

generated by the RGM. Minimal alterations consist of changes such as allowing access to

temporary directories instead of specific files in those directories. The EnfM enforces the

OAL, therefore it depends directly on the OAL. The two services will not be tested

separately, the combined effect of them will be tested. The two services are tested by

running an exploit against a sandboxed program and recording whether the associated

payload succeeds or fails to execute. The outcomes of the test for the two services are:

Success: the payload is not able to execute

Failure: the payload is able to execute

3.4 Workload

To test MOMS, a set of programs will be used, along with associated program tasks.

The performance metrics, especially the performance metrics measuring efficiency,

depend on the particular program and program task being used.

Program The performance of a program depends on the details of that program, such as

the amount of input and output operations it does and the amount of memory it uses.

More specific to MOMS, the number of total handle create and duplicate operations

and the number of unique objects the program requests a handle to affects the

performance of the program, since the higher either of them are, the more work

MOMS must do.
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Program Task The performance of an individual program not only depends on the

individual program, but also on the task it is doing, such as the document it is

opening.

3.5 Performance Metrics

There are two main performance metrics that measure the performance of MOMS

and determine whether the goals for the system have been achieved:

Efficiency of the RGM and the EnfM Determined by the execution time or execution

speed of a set of programs with and without the RGM,

Effectiveness of the RGM and the EnfM Determined by the success or failure of the

payload of a associated with an exploit.

3.6 System Parameters

The two CUTs have many system parameters in common and are therefore listed

together.

Number of Processor Cores: This parameter includes the total number of cores:

whether they are on different physical processors within the same computer, on the

same physical processor, or some combination. The number of processor cores

affects the performance of multi-threaded programs and the performance of

programs that run at the same time as other programs.

Processor Speed (Clock Frequency): The processor speed affects the speed that

programs run at, that is the higher the processor speed, the lower the execution time

of the program.

Memory Size: Memory size is important because access lists can get large enough that

they do not fit in available memory and may need to be stored on the hard drive. The
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more memory the system has the less the processor must go to the hard drive to

retrieve the data.

Memory Speed: Memory Speed is important because faster memory can respond to

processor requests quicker and therefore the faster the program runs.

Hard Drive Speed: There are two types of drives: hard drives (HDs) and solid state

drives (SSDs). The speed of HDs are reported as the number of revolutions per

minute they make. The speed of SSDs are reported as how much data they can read

or write per second. The HD speed can have an important role if the processor has

to wait on the HD for data.

3.7 System Factors and Levels

Since the RGM and the EnfM are very similar and they will run on similar machines,

the same factors and levels pertain to both of them or neither of them. Table 3.1 contains

the system factors that are considered when testing MOMS and the corresponding levels

that are considered when evaluating MOMS.

The Program being ran and the Program Task are included as factors because they

can affect the efficiency of the system. The levels chosen for the Program being ran are

chosen to represent the kinds of programs someone would use on a daily basis.

Benchmarks are not used so that the effectiveness of MOMS, at preventing the payload of

an exploit from successfully executing, can be tested with the same programs that are used

for efficiency testing. The levels chosen for the Program Task are chosen for each

Program in order to exercise some of the functionality of the program. For 7-Zip 9.20, the

first task is performing compression and the second task is performing decompression.

Each task is opening a web page, for Internet Explorer 8. For the rest of the programs,

each task is opening an appropriate document.

40



The Number of Processor Cores is included because access checks could become a

bottle neck if the system has to wait for too many checks and the more cores there are the

less of a concern this is. The levels, one and two cores, are chosen. Memory Size is often

an important factor for system performance, which is important for the EnfM. Two levels

are chosen for the memory size: 2 GBs because it is a common size for basic systems

running Windows 7 and 3 GBs because it is the maximum available on the computer used

for testing. The number of cores, and the available memory are controlled with the

Windows boot options, the underlying hardware of a two core processor and 4 GBs of

installed physical memory did not change.

The Processor Speed is not a factor because it does not have a significant impact

when compared to the micro-architecture of the processor and the number of cores. In

addition, Memory Speed is not a factor because there is not a significant enough a

difference between the speeds found in most workplace computers for it to be an

important factor. Due to the relatively small size of MOMS, HD Speed should not have a

significant impact on the operation of MOMS.

3.8 Evaluation Techniques

Two different evaluation techniques are used to fully evaluate MOMS: measurement

of a real system and analytical modeling.

Measurement of a real system evaluates the performance of MOMS and its

effectiveness against current attacks. To evaluate the performance of MOMS, the

programs in Table 3.1 are used. There are 250 repetitions of each task for each program,

which should meet the statistical requirements in Section 3.9. Each program is run a total

of 250 times, because when each program was run for 100 repetitions, initially, the

resulting data was not normally distributed, so they were run an additional 150 times in an

attempt to get more normally distributed data.
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Table 3.1: System Factors and Levels for MOMS

System Factor Level

Program 7-Zip 9.20

Acrobat Reader 9.0

Internet Explorer 8

Microsoft Excel 2007

Microsoft Power Point 2007

Microsoft Word 2007

Program Task Task 1

Task 2

Number of Processor Cores 1 core

2 cores

Memory Size 2 GB

3 GB
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A single test run of a program consists of running the program for each task. The

program opens the first task, an appropriate document or web page, and closes it, then it

opens and closes the second task. The execution time is the total amount of time that

passes from when the program is told to open the task to when the program has exited.

The execution time for the first task and the second task are recorded as the performance

metrics for the program. An exception, to evaluate 7-Zip 9.20, the built in benchmark is

used. The built in benchmark measures the compression and decompression speeds in

KB/s and runs for the number of desired repetitions. The compression speed is recorded

as the performance metric, execution speed, for the first task and the decompression speed

is recorded as the performance metric for the second task.

A complete test run of a program consists of running the single test run for the

program for the number of desired repetitions plus one; the first single test run is ignored,

since there is too much variability in the performance metrics for the first run. A system

test run consists of running the complete test run of each program in succession. Each

system test run is run without and with the RGM.

The evaluation of the RGM and the EnfM is in two parts: evaluation of its

effectiveness against current attacks and an analysis of its effectiveness against future

attacks designed to circumvent it. To evaluate its effectiveness against current attacks, a

set of exploits is used, along with appropriate payloads. Malware is composed of two

main components: the exploit, which uses a vulnerability in a program to execute some

arbitrary code, and the payload, which is the arbitrary code an exploit executes. The OALs

are tuned as if they are going to be deployed in a production environment. The exploits are

then run and whether the associated payload successfully executes is recorded. To

evaluate the effectiveness of the EnfM against future attacks designed to circumvent it, an

analysis is done on the EnfM to determine potential vulnerabilities that may be exploited.
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3.9 Experimental Design

The experimental design evaluates the efficiency and effectiveness of the RGM and

EnfM. The efficiency measurements depend on the execution time of the RGM and the

EnfM which is a probabilistic measurement, so some repetitions are required. In addition,

the factors related to the efficiency have a lot of interaction and there are not many

factors/levels, so a full factorial design is appropriate. Since the timing of the CUTs are

not critical (they have to be fast enough so people will use them) a confidence level of

90% is appropriate. The tests to determine the effectiveness of the RGM and EnfM will be

reported without statistical analysis, since they are deterministic results, so no repetitions

are required, and there are not many results.

3.10 Summary

MOMS consists of two main components, RGM and EnfM, and two secondary

components, Administration Computer and Production Computer. The RGM runs on the

Administration Computer and the EnfM runs on the Production Computer. There are two

metrics used to evaluate this system: the efficiency of the RGM on the Administration

Computer and the combined accuracy of the RGM and the EnfM. To evaluate the system

based on these metrics a set of representative programs will be run on different

configurations of the system to determine the efficiency of MOMS and the effectiveness of

MOMS against current threats. To evaluate the accuracy of the EnfM against future

threats designed to circumvent it, an analytical evaluation approach is used. The

confidence level for the efficiencies only needs to be 90%, since the system only needs to

be fast enough that people will use it.
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4 Results and Discussion

This chapter determines the impact the RGM has on the performance of the system

and the effect the hardware configuration, the Number of Processor Cores and the

Memory Size factors, has on performance. In addition, the effectiveness of MOMS in

sandboxing programs will be determined in this chapter as well.

To determine the effect MOMS has on the performance of the system, the

performance metrics for each factor level combination without the RGM, the base system,

will be compared with the performance metrics for the same factor level combination with

the RGM. For each comparison, the Wilcoxon signed rank test will be used, which is the

Mann-Whitney U test for paired groups. The paired groups version of the Mann-Whitney

U test is used, because the performance data for with and without MOMS is dependent on

each other; the performance of the system with MOMS depends on the base system, since

the better or worse the base system performs, the better or worse the system with MOMS

performs [26, p. 165]. The Wilcoxon signed rank test, a non-parametric test (it does not

assume the data conforms to a particular distribution), will be used instead of a parametric

test like the t-test, because the underlying data does not have a consistent underlying

distribution.

To determine the effect the hardware configuration has on performance, for each

program configuration (the Program and the Program Task factors), the performance

metrics associated with each hardware configuration will be compared pair-wise. They

will be compared with the Wilcoxon signed rank test, for the same reasons as above. A

pair-wise comparison of each hardware configuration is conducted, instead of a linear

model, to maintain consistency, since not all of the data conforms to an underlying

distribution and therefore a linear model cannot be done with that data.

Before the impact the RGM and the effect the hardware configuration has on

performance is determined, the underlying data will be examined in order to determine if
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the data has any internal relationships, that is departures from randomness, and to

determine how the data is distributed.

4.1 Internal Relationships of the Data

To determine whether a sample set has an internal relationship an autocorrelation plot

will be used. When the autocorrelation plot indicates the sample set may be internally

related, a lag plot will be used to view what the relationship is. Autocorrelation plots

graph the autocorrelation value of a sample shifted by multiple values, k. The

autocorrelation value measures the amount of correlation between a sample set and the

shifted sample set. It is a continuous value from 1 to -1, where 1 indicates strong positive

correlation, 0 indicates no correlation, and -1 indicates strong negative correlation. The

closer the autocorrelation value is to 0, the more random the sample is. Lag plots visually

represent the autocorrelation plot for k = 1. Lag Plots also show the existence of outliers.

The autocorrelation plots for each program is in Appendix A. For each program, the

autocorrelation plots show that the data for most of the configurations are random. For the

configurations of a program that are not random, lag plots are used to determine the

relationship of the data.

All of the configurations of 7-Zip is random, as shown in Figure A.1, except for

three: the base system with one core and 3GBs for compression and decompression and

the RGM with two cores and 2GBs for decompression. The lag plots in Figure 4.1 show a

linear relationship for the data points, centralized in the upper-right corner, and it shows

several outliers.

Figure A.2 shows that the underlying data for each configuration of Acrobat Reader

is random. However, the underlying data for three configurations of the Excel Spreadsheet

1 (the base system with one and two cores, and 2 GBs memory, and for the RGM with 2
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(a) Base System - Compression:

1 Core, 3 GB

(b) Base System - Decompres-

sion:

1 Core, 3 GB

(c) RGM - Decompression:

2 Cores, 2 GB

Figure 4.1: Lag Plots for 7-Zip

(a) Base System:

1 Core, 2 GB

(b) Base System:

2 Cores, 2 GB

(c) RGM:

2 Cores, 2 GB

Figure 4.2: Lag Plots for Excel, Spreadsheet 1
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(a) Base System:

1 Core, 2 GB

(b) RGM:

1 Core, 2 GB

(c) RGM:

2 Cores, 3 GB

Figure 4.3: Lag Plots for PowerPoint, Slide Show 2

cores and 3 GBs memory) is not random, as Figure A.3a shows. As shown in Figure 4.2,

the samples have a widely varying slightly linear relationship.

The underlying data for Internet Explorer, shown in Figure A.4, in all configurations,

is random. Figure A.5b shows that the underlying data for Slide 2 for PowerPoint is not

random for three of the configurations: the base system with one core and 2 GBs of

memory, the RGM with one core and 2 GBs of memory, and the RGM with 2 cores and 3

GBs of memory. Figure 4.3 shows that the samples have a widely varying slightly linear

relationship as is the case for the Excel Spreadsheet 1.

Finally, Figure A.6 shows that the data for the base system with one core and 2 GBs

of memory, and for the RGM with two cores and 3 GBs of memory, for both Word

documents, may be non-random. In addition, it shows that the base system, with one core

and 3 GBs of memory, for the Word document 2 may also have some non-randomness.

Figures 4.4a to 4.4d show that the samples have a linear relationship and are therefore not

random. Figure 4.4e shows that the samples for the base system, with one core and 3 GBs

of memory, for the Word document 2, is random, with the exception of some outliers.
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(a) Base System - Document 1:

1 Core, 2 GB

(b) RGM - Document 1:

2 Cores, 3 GB

(c) Base System - Document 2:

1 Core, 2 GB

(d) RGM - Document 2:

2 Cores, 3 GB

(e) Base System - Document 2:

1 Core, 3 GB

Figure 4.4: Lag Plots for Word
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4.2 Determine Data Distribution

Distribution plots will be used to show how a sample set is distributed. Distribution

plots consist of a histogram of the data, a kernel density plot, and the kernel density plot

for a normal distribution superimposed on the same graph. The histogram groups the

values of the sample set into a number of bins and graphs the probability density of each

bin, which is based on the number of data points in each bin. The kernel density plot, in

this case, serves as a continuous version of the histogram. Both the histogram and the

kernel density plot show the shape of the sample set. The kernel density plot for a normal

distribution shows the shape of a normal distribution based on the sample set, the mean

and standard deviation of the normal distribution are set to the mean and standard

deviation of the sample set [26, p. 128-132].

The sample sets are compared to the normal distribution because it is a common

distribution and will provide a good basis for comparison. To determine if a sample set is

normally distributed, the kernel density plot of the sample set and the normal distribution

are compared; if the two kernel density plots are matched closely enough, the sample set

is considered normally distributed.

Appendix B contains the distribution plots for each configuration for each program.

While the samples for some of the configurations, such as the base system with one core

and 2 GBs of memory for Word document 1, shown in Figure B.6a, are approximately

normally distributed, not many of them are. Moreover, some of the program and task pairs

have no configuration that is normally distributed, such as Acrobat Reader PDF 1, as

Figure B.2a shows. Furthermore, there are many different types of distributions and some

of the sample sets do not conform to any standard distribution, such as Word document 2,

as shown in Figure B.6b.
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4.3 Effect of Factors on Performance

To determine which of the hardware configuration factors have a strong impact on the

performance of the system, each hardware configuration is compared pair-wise, for each

program configuration. To visualize the effect the hardware configuration factors have on

performance, for each program configuration pair, the box plots representing the sample

sets of each hardware configuration are graphed next to a graph of the difference between

each pair-wise hardware configuration. If the calculated difference between a pair of

hardware configurations is not statistically significant (its p-value is greater than 0.1), then

it is graphed as being zero on the the difference graph. The graphs for each program are in

Appendix C.

The graphs for 7-Zip, Figure C.1, show the effect the different hardware configuration

factors have on the performance of 7-Zip compression and decompression, on the base

system and with the RGM. The graphs show that the only time the performance metric,

compression or decompression speed, changes by any practically significant amount is

when the number of cores change. A practically significant performance change is one

that a user may be able to notice; a performance change that is not practically significant is

one that a user will not notice.

No practically significant performance metric changes occurred for Acrobat Reader

PDF 1, as shown in Figure C.2a. Figures C.2b to C.5 show a negligible difference (a

practically significant difference a user probably will not notice), for Acrobat Reader PDF

2 and the other programs, except Word, when the number of cores differ, but show no

practical difference for changes in memory size. Word shows a slightly higher impact to

performance from memory size differences than for the previous program configuration

pairs, as Figure C.6 shows.

Based on the aggregation of the above results, the number of cores has an impact on

performance, while the amount of memory does not, regardless of whether MOMS is
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running or not. Even though the number of cores has an effect on performance, the impact

is negligible, except for 7-Zip, since the maximum difference in execution time is about

400 milliseconds. The impact that the number of cores has on the compression and

decompression speed of 7-Zip is non-negligible, especially for large files, at about 2 MB/s

and 26 MB/s improvement, respectively. The probable reason that the memory size does

not have a practical impact on performance is that the test programs do not use enough

memory to be limited by the lower memory size limit, therefore they do not use the extra

memory, even though it is available. The memory size may have more of an impact when

other programs are used to test the system or if enough other tasks are going on.

Therefore, when deciding what the hardware configuration should be for a computer

running MOMS, MOMS should be tested with a workload that more accurately reflects

the environment of the average user; however, for the particular test programs used and

the, tasks they performed, the hardware configuration has a negligible impact on

performance, except for 7-Zip.

4.4 Effect of Magnesium Object Manager Sandbox on Peformance

Now that the effect of the hardware configuration factors have been determined, the

effect MOMS has on the performance, regardless of the workload or other factors, will be

determined. This analysis will be conducted in two parts, visually and through statistical

analysis. The visual analysis consists of box plots representing the performance data of

the system with and without MOMS, for each combination of factor level and workload;

this allows one to get a feeling of the relationship. The statistical analysis is a Wilcoxon

signed rank test to determine whether the perceived relationship is statistically significant,

and if it is whether there is a practical difference. Appendix D contains the box plots and

the statistical analysis for each hardware and program configuration pair.

For the hardware configuration of one core and 2 GBs of memory, the box plots,

shown in Figure D.1, indicate that the RGM mode decreases the performance of Internet
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Explorer for both web pages and actually increases the performance of Word for the

second document and possibly for the first document. Since, the RGM adds additional

processing to the system and takes no steps to improve performance, such as performing

additional caching, performance cannot increase with the RGM running. Therefore, the

perceived performance increase is probably due to the system experiencing more overhead

when data was being gathered on the base system than on the system with the RGM

running. The additional overhead could come from sources such as the system responding

to increased network traffic or other processes conducting background work, even though

steps are taken to reduce this. The box plots indicate that for all the other program

configurations there is no difference in the performance of the base system and the system

with the RGM running.

The statistical analysis for the one core and 2 GBs of memory hardware

configuration, shown in Table D.1, shows that Internet Explorer does decrease

performance for both web pages and that Word does increase performance for both

documents. All the other program configurations either have no statistically significance

or no practical difference. The impact that the RGM has on Internet Explorer for the two

web pages, and on Word for the two documents, is negligible, with a maximum impact of

less than 400 milliseconds.

For one core and 3 GBs of memory, Figure D.2 indicates that the RGM decreases the

performance of Internet Explorer for both web pages, possibly decreases performance for

both slide shows for PowerPoint, and possibly increases the performance of Word on the

second document. The apparent increase in performance of Word for the second document

is probably due to the same reasons as above. Table D.2 shows that the RGM decreases

performance negligibly for both web pages on Internet Explorer, but does not impact

performance for the other programs, either statistically or practically significantly.
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The RGM decreases performance for the first web page on Internet Explorer, for

both slide shows on PowerPoint, and on Word for both documents, for the hardware

configuration of two cores and 2 GBs of memory, as Figure D.3 shows. It also indicates

that the performance of Internet Explorer, for the second web page, may increase with the

RGM running. Table D.3 shows that MOMS negligibly decreases the performance of

Internet Explorer for the first web page, but does not impact performance, statistically or

practically, for any of the other program configuration pairs.

Finally, for the two cores and 3 GBs of memory hardware configuration, Figure D.4

indicates that the RGM decreases performance for the first PDF on Acrobat Reader, for

the first web page on Internet Explorer, and for both documents on Excel, PowerPoint and

Word. Table D.4 shows that the first web page on Internet Explorer has a negligible

performance decrease due to the RGM, as does both documents for Word. It shows that

there is no statistically or practically significant performance impact for the other program

configuration pairs.

As shown in Appendix D and discussed above, and as summarized in Table 4.1 (the

statistically insignificant values have been set to zero), MOMS has a negligible impact to

performance.

4.5 Effectiveness of Magnesium Object Manager Sandbox

A set of exploits are run against the test programs to evaluate the effect the EnfM has

on the success of the associated payload. Since MOMS is not intended to protect

programs from compromises, but rather to protect the system from compromised

programs, an exploit is successful if its payload executes successfully. If the payload

successfully executes, it indicates that the sandboxed program gained access to more

objects than it is suppose to.
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Table 4.1: Summary of the Impact the RGM has on Program Performance

Program Document
1 Core
2 GB

1 Core
3 GB

2 Cores
2 GB

2 Cores
3 GB

7-Zip Compression -1 KB/s 0 KB/s 0 KB/s 0 KB/s

Decompression 0 KB/s 0 KB/s 0 KB/s 0 KB/s

Acrobat Reader PDF 1 -0.04 ms -0.65 ms -0.15 ms -15.51 ms

PDF 2 -10.82 ms 0 ms -15.51 ms -0.05 ms

Internet Explorer Web Page 1 -374.4 ms -358.94 ms -265.22 ms -280.79 ms

Web Page 2 -73.53 ms -73.61 ms 13.24 ms 0 ms

Excel Spreadsheet 1 15.62 ms -31.17 ms -15.47 ms -31.19 ms

Spreadsheet 2 0 ms -31.21 ms -15.57 ms -31.13 ms

PowerPoint Slide Show 1 0 ms -31.23 ms -31.19 ms -46.95 ms

Slide Show 2 16.29 ms -15.6 ms -31.25 ms -62.46 ms

Word Document 1 77.97 ms -15.6 ms -41.81 ms -124.71 ms

Document 2 125.03 ms 46.84 ms -31.16 ms -140.3 ms
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Exploits for each test program were searched for. Of the exploits found, only the

ones that are able to successfully execute their payload (many are able to compromise the

program but are unable to execute a payload, most likely due to other protections provided

by Windows 7 32-bit) are used to determine the effectiveness of the EnfM. Table 4.2

shows the EnfM stops all the payloads from executing, which indicates the EnfM is

effective at preventing exploit payloads from causing damage to the system; however, this

does not mean that the EnfM is effective at preventing all exploit payloads from causing

damage to the system.

Table 4.2: Successfullnes of Exploits with the EnfM Running

Target
Program Exploit

Payload
Executed

Internet
Explorer 8

IE Unsafe Scripting
Misconfiguration [31] No

Sun Java Runtime New
Plugin docbase Buffer Overflow [24] No

Internet Explorer CSS
Recursive Import Use After Free [37] No

MS11-050 IE
mshtml!CObjectElement Use After Free [15] No

Adobe Acrobat
Reader 9.0

Adobe CoolType SING Table
“uniqueName” Stack Buffer Overflow [23] No

Escape From PDF [46] No

Even though the EnfM is effective at preventing the exploits in Table 4.2, it does not

mean that it can prevent all exploit payloads. Some possible ways the EnfM could be

circumvented are through file system hard links, too generalized OALs, and non-specific

filenames.
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File system hard links are a feature of the NTFS file system that essentially gives a

file two or more names [20]. This can lead to a compromise of the rest of the system if a

file the sandboxed program should not have access to has a hard link to it made that has

the name of a file the sandboxed program should have access to; in other words, a file a

sandboxed program should not have access is given an additional file system level name of

a file the sandboxed program can access to, thereby giving the sandboxed program access

to the file it should not be able to access. To prevent this, the EnfM could be improved to

not allow access to any file that had a hard link made to it (can be accomplished through

the Windows API [18]), or if a file does have hard links to it, access can be allowed only if

all of the hard links are in the OAL (can be done through examining the NTFS file

attributes [32, 8], such as by using Windows utilities [17, 48]). Symbolic links are not a

problem because they require administrative access to create and the symbolic links are

resolved when the name lookup takes place, therefore the EnfM would not see the

symbolic name, just the actual name of the file.[14]

As is, the EnfM mode can allow access to objects just based on the beginning of the

name of the object. This is done so that the program can function without having to list

every object the program can access, even if the full name may not be known (such as

cached data in Internet Explorer) or is partially random. If the OAL is constructed in such

a way that one of these generalized entries gives the sandboxed program access to an

object it should not have access to, then the EnfM could be ineffective against the payload

of an exploit. This risk can be mitigated by allowing the OAL entries to be more specific,

such as through regular expression matching, allowing the administrator to specify the

form of the name, rather than just the beginning of the name that is constant.

Currently, MOMS looks for the main process by its short name, the name that shows

up in Windows Task Manager. Any executable on the system could be named the same as

one of the main processes. While this does not create a vulnerability, since a program that
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has the same name of a main process would just be put into the sandbox of the main

process, this could cause problems as MOMS is further developed. Therefore, MOMS

should look for main processes based on the full path of the executable, rather than just

the short name [52, 13].
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5 Conclusion and Future Work

MOMS is created as an alternative to the existing sandboxes that intercept system

calls in order to sandbox programs, and it is similar to sandboxes such as SELinux and

FreeBSD Jails. MOMS is implemented using the function callback functionality provided

by the Windows OM, which is the component that manages all objects and distributes

handles to those objects to user mode programs. Using this method, the RGM of MOMS

logs the objects that a sandboxed program accesses, the sandbox administrator then

modifies this list to create the OAL, and then the EnfM enforces the OAL

Once MOMS is implemented, a set of programs are used to test its efficiency and

effectiveness. Each test program had two different tasks to perform, such as opening an

appropriate document. Each program and task is run with and without the RGM, with 2 or

3 GBs of memory, and with one or two processor cores. The RGM is used to also indicate

the performance of the EnfM. The performance metrics are analyzed in two ways. To

determine whether the different hardware configurations, memory size and number of

processor cores, significantly impacted the performance of MOMS, the performance data

for each hardware configuration is compared, for each combination of program, program

task, and whether the RGM is running. From these comparisons, it is determined that the

number of processor cores generally affected performance much more than the amount of

memory, which is probably due to the test programs not using enough memory to benefit

from the increased memory; however, the performance is not affected enough to have a

significant practical effect, especially for the memory size. To determine the impact the

RGM has on performance, the performance metrics for each program, program task, and

hardware configuration combination, with and without the RGM running are compared.

This comparison showed that there is a statistically significant impact to performance

when programs are run with the RGM, but the difference is not practically significant.
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These results have limited application, since the programs, and the program tasks are

limited and not chosen at random; however, they do indicate that the performance impact

of the RGM is minimal, regardless of the hardware configuration. To make these results

more applicable, more programs and program tasks must be tested in a similar manner as

above. The programs and program tasks should also be chosen at random from programs

and tasks that represent the normal workload of a user. In addition, the performance of the

programs when the system is running several programs, such as what a normal user would

run, should be explored.

In addition to the performance impact of MOMS being tested, the effectiveness of

MOMS is determined by testing exploits to a subset of the above test programs and

recording whether the payload associated with each exploit executed successfully. MOMS

is successful in preventing the payloads of all the tested exploits from executing. Again,

these results have a limited applicability, but they do show that further testing, with a

wider range of exploits, is warranted. Furthermore, MOMS is analyzed to identify

possible vulnerabilities that could be exploited in order to limit its effectiveness. While

there are some vulnerabilities in the current implementation of MOMS, they are all

straight forward to fix.

5.1 Alternative Sandbox Methods

5.1.1 Automatic Program Confinement to Private Namespaces. Currently MOMS

only limits the effect a sandboxed program can have on the system, but it would be

beneficial to explore ways to limit the effect other programs can have on a sandboxed

program. One way to do this is to place objects a sandboxed process accesses into a

private namespace. Private namespaces are a feature of the OM that allow a program to

limit the processes that can access its objects [34]. While this feature is intended for

programs to place themselves into a private namespace, it may be possible to extend this

feature to allow arbitrary programs into their own private namespace, without rewriting

60



the program. If it is possible it would be an effective way to limit the actions other

programs can take on the sandboxed program.

5.1.2 Automatically Assign Processes to Jobs. An alternative method to restrict

the objects a process can access is to create Job objects that have only the rights for a

program to run, and then assign processes of the program to the Job. This method would

provide similar protections as the MOMS does, but it would rely entirely on official

functionality (currently the SupportsObjectCallbacks field must be altered for each object

type) and it may be more efficient. This method could also be extended to limit the ways

processes can interact with sandboxed programs by assigning them to a Job that does not

allow them access to the objects that the sandboxed programs access.

In its current state, MOMS is a good start to exploring other sandboxing methods on

Windows; however, more work is needed to expand this research and to determine the best

way to sandbox programs on Windows.
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Appendix A: Autocorrelation Plots

(a) Compression

(b) Decompression

Figure A.1: Autocorrelation Plots for 7-Zip
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(a) PDF 1

(b) PDF 2

Figure A.2: Autocorrelation Plots for Acrobat Reader
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(a) Spreadsheet 1

(b) Spreadsheet 2

Figure A.3: Autocorrelation Plots for Excel
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(a) Web Page 1

(b) Web Page 2

Figure A.4: Autocorrelation Plots for Internet Explorer
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(a) Slide Show 1

(b) Slide Show 2

Figure A.5: Autocorrelation Plots for PowerPoint
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(a) Document 1

(b) Document 2

Figure A.6: Autocorrelation Plots for Word
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Appendix B: Distribution Plots

(a) Compression

(b) Decompression

Figure B.1: Distribution Plot For 7-Zip
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(a) PDF 1

(b) PDF 2

Figure B.2: Distribution Plot For Acrobat Reader
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(a) Spreadsheet 1

(b) Spreadsheet 2

Figure B.3: Distribution Plot For Excel
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(a) Web Page 1

(b) Web Page 2

Figure B.4: Distribution Plot For Internet Explorer
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(a) Slide Show 1

(b) Slide Show 2

Figure B.5: Distribution Plot For PowerPoint
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(a) Document 1

(b) Document 2

Figure B.6: Distribution Plot For Word
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Appendix C: Effect of Hardware Configuration on Performance

(a) Compression

(b) Decompression

Figure C.1: Hardware Configuration Performance Results for 7-Zip
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(a) PDF 1

(b) PDF 2

Figure C.2: Hardware Configuration Performance Results for Acrobat Reader
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(a) Spreadsheet 1

(b) Spreadsheet 2

Figure C.3: Hardware Configuration Performance Results for Excel
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(a) Web Page 1

(b) Web Page 2

Figure C.4: Hardware Configuration Performance Results for Internet Explorer
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(a) Slide Show 1

(b) Slide Show 2

Figure C.5: Hardware Configuration Performance Results for PowerPoint
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(a) Document 1

(b) Document 2

Figure C.6: Hardware Configuration Performance Results for Word
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Appendix D: Performance Impact of Magnesium Object Manager Sandbox

Figure D.1: Performance Impact of MOMS: 1 Core, 2 GB

80



Table D.1: Performance Impact Results of MOMS: 1 Core, 2 GB

Program Document
Difference

(Baseline - RGM) Units p-value

7-Zip Compression -1.000009 KB/s 1.259322e-06

Decompression 1.598204e-05 KB/s 0.2136175

Acrobat Reader PDF 1 -0.04093948 ms 0.05880068

PDF 2 -10.81654 ms 4.651519e-05

Internet Explorer Web Page 1 -374.3966 ms 4.084449e-57

Web Page 2 -73.52848 ms 2.233854e-83

Excel Spreadsheet 1 15.62357 ms 0.04867886

Spreadsheet 2 0.004699188 ms 0.8958299

PowerPoint Slide Show 1 -15.53777 ms 0.1704044

Slide Show 2 16.28919 ms 0.002637716

Word Document 1 77.96559 ms 4.604308e-20

Document 2 125.0297 ms 8.180757e-55
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Figure D.2: Performance Impact of MOMS: 1 Core, 3 GB
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Table D.2: Performance Impact Results of MOMS: 1 Core, 3 GB

Program Document
Difference

(Baseline - RGM) Units p-value

7-Zip Compression 4.297132e-05 KB/s 0.007803446

Decompression 4.981807e-05 KB/s 0.002834431

Acrobat Reader PDF 1 -0.6517044 ms 1.389387e-07

PDF 2 -0.03653842 ms 0.4229165

Internet Explorer Web Page 1 -358.9382 ms 7.045827e-53

Web Page 2 -73.61211 ms 7.865689e-83

Excel Spreadsheet 1 -31.1707 ms 9.01863e-07

Spreadsheet 2 -31.20813 ms 2.177921e-05

PowerPoint Slide Show 1 -31.22941 ms 1.135776e-13

Slide Show 2 -15.60341 ms 4.65167e-12

Word Document 1 -15.59549 ms 0.0009502865

Document 2 46.84255 ms 7.914954e-16
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Figure D.3: Performance Impact of MOMS: 2 Cores, 2 GB
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Table D.3: Performance Impact Results of MOMS: 2 Core, 2 GB

Program Document
Difference

(Baseline - RGM) Units p-value

7-Zip Compression 5.13232e-06 KB/s 0.00500766

Decompression 2.628481e-05 KB/s 0.6973014

Acrobat Reader PDF 1 -0.1462755 ms 3.266672e-13

PDF 2 -15.5056 ms 5.370356e-06

Internet Explorer Web Page 1 -265.2194 ms 1.136964e-51

Web Page 2 13.23786 ms 1.292535e-09

Excel Spreadsheet 1 -15.465 ms 9.727734e-05

Spreadsheet 2 -15.57145 ms 3.298751e-08

PowerPoint Slide Show 1 -31.19289 ms 1.96343e-18

Slide Show 2 -31.25074 ms 3.227453e-28

Word Document 1 -41.81169 ms 1.305241e-66

Document 2 -31.16406 ms 5.532732e-54
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Figure D.4: Performance Impact of MOMS: 2 Cores, 3 GB
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Table D.4: Performance Impact Results of MOMS: 2 Core, 3 GB

Program Document
Difference

(Baseline - RGM) Units p-value

7-Zip Compression 3.125371e-05 KB/s 0.8182311

Decompression 1.791934e-05 KB/s 0.0006328919

Acrobat Reader PDF 1 -15.50572 ms 7.213207e-25

PDF 2 -0.05368079 ms 0.0266545

Internet Explorer Web Page 1 -280.7928 ms 1.180738e-47

Web Page 2 0.8109125 ms 0.4801655

Excel Spreadsheet 1 -31.18607 ms 1.793086e-25

Spreadsheet 2 -31.12865 ms 1.538028e-22

PowerPoint Slide Show 1 -46.94565 ms 3.390136e-42

Slide Show 2 -62.45836 ms 1.033036e-53

Word Document 1 -124.7062 ms 1.477834e-70

Document 2 -140.3046 ms 7.622166e-68
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